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The structure of axisymmetric buoyancy-driven convection in a vertical cylinder
heated from below is probed by finite-element solution of the Boussinesq equations
coupled with computer-implemented perturbation techniques for detecting and
tracking multiple flows and for determining flow stability. Results are reported for
fluids with a Prandtl number of one and for cylinders with aspect ratio A (defined
as the ratio of height to radius of the cylinder) between 0.5 and 2.25. Extensive
calculations of the neutral stability curves for the static solution and of the nonlinear
motions along the bifurcating flow families show a continuous change of the primary
cellular motion from a single toroidal cell to two and three cells nested radially in
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520 Y. YAMAGUCHI, C.J. CHANG AND R.A. BROWN

the cylinder, instead of the sharp transitions found for a cylinder with shear-free
sidewalls. The smooth transitions in flow structure with Rayleigh number and A are
explained by nonlinear connectivity between the first two bifurcating flow families
formed either by a secondary bifurcation point for 4 < A* 2 0.80 or by a limit point
for A4 = A*. The transition between the two modes may be described by the theory
of multiple limit point bifurcation.

1. INTRODUCTION

Since the early works of Bénard (19o01) and Rayleigh (1916) for a horizontal fluid layer, the
onset and evolution of convective motions caused by temperature-induced buoyancy differences
have been the focus of extensive theoretical and experimental research. For geometries with
imposed temperature fields that are purely vertical and heated from below, convection begins
at a critical temperature difference, measured in terms of the Rayleigh number, beyond which
the static fluid is unstable to small amplitude disturbances of the velocity, pressure and
temperature fields. These critical Rayleigh numbers are determined as the eigenvalues for
marginal stability in an analysis constructed from the Boussinesq equations linearized about
the static state.

The calculation of the fluid motions that evolve for Rayleigh numbers away from the critical
values requires nonlinear analysis, either by perturbation methods (Schliiter ef al. 1965) or by
numerical solution of the full Boussinesq equations. Perturbation methods are most tractable
for geometries where at least part of the boundary is shear-free and eigenfunctions for the field
variables can be written in terms of only a few special functions. Even in these systems limitations
on the range of validity of the perturbation technique confine the results to flows only sightly
perturbed from the rest state. Numerical calculations have the potential for determining these
flows over a much wider range of Rayleigh number and describing the nonlinear evolution
of the structure with changes in the geometry of the cavity and Prandtl number. The purpose
of this paper is to describe such a numerical study for axisymmetric convection in a vertical
cylinder heated from below.

We report calculations for the form and stability of the steady two-dimensional flows in a
cylinder with rigid boundaries and insulated sidewalls. These flows are computed by combining
finite-element methods for solving the Boussinesq equations with efficient computer-aided
schemes for tracking the evolution and multiplicity of the flow field with changes in parameters,
such as Rayleigh number.

The numerical techniques for calculating solution multiplicity and stability have been
developed as outgrowths of classical asymptotic analysis of bifurcation in systems of algebraic
equations (cf. Keller 1977; Brown & Scriven, 198o0a; Ungar & Brown 1982) and are applied
here to the finite-dimensional equation set that results from the finite-element approximation
to the Boussinesq equations. With this approach, we are able to extend previous calculations
for the flows evolving from rest while simultaneously determining nonlinear interactions
between families of flows. The stability results presented here are based on a linear analysis
of the stability of the finite-element solutions to small perturbations in the field variables and
are computed by schemes that make use of the connections between the change of stability of
a family of flows and the occurrence of a critical value of Rayleigh number where the flow
is locally not unique. These techniques are general for all disturbances, except those leading
to time-periodic bifurcation, and are much more efficient than the eigenvalue calculations used
in previous studies (Brown & Scriven 1980a,b).
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The cataloging of the branching and evolution of multiple flow fields is a fruitful approach
to the description of nonlinear natural convection and the effect of varying parameters and
geometry, as has been recently demonstrated by the studies of Daniels (1977, 1979), Tavantis
etal. (1978),and Hall & Walton (1977, 1979). In this framework, the critical Rayleigh numbers
{Ra®} determined from linear stability analysis mark the points of bifurcation between families
of flows and the rest state; the eigenfunctions describe the structure of the new flows near the
respective bifurcation points. A simple eigenvalue Ra{ along the static family is then a simple
bifurcation point joining two flow families, the static one and the new family of flows. These
flows exist for some range of Rayleigh number beyond Ra{, as shown by asymptotic analysis
for rectangular cavities (Schliiter ¢¢ al. 1965; Daniel 1977; Hall & Walton 1977) and for a
cylinder with shear-free boundaries (Liang et al. 1969; Rosenblat 1982). The critical values
{RaP} have been obtained for vertical cylinders with several combinations of rigid and shear-free
boundaries.

Zierep (1959) first calculated these for a cylinder with rigid ends and shear-free sidewall and
found that particular cellular flow structures were associated uniquely with each critical
Rayleigh number. The ordering of the set {Ra{?} depended on the aspect ratio 4 (defined as
the radius divided by the height). Distinct values of A existed where two critical values of Ra
were equal and where two flow patterns were equally likely. These values of Rayleigh number
are double bifurcation points (Iooss & Joseph 1980) in the full nonlinear problem and, as shown
by Bauer ¢t al. (1975), signal the possibility of secondary bifurcation along one of the new flow
families for aspect ratios just slightly perturbed from this special value. Hall & Walton (1979)
noted the existence of double points for the onset of convection in a rectangular cavity with
rigid sidewalls and shear-free ends and used amplitude expansions to show the existence of a
secondary bifurcation point. Double points are most simply found for a cylinder with shear-free
boundaries all around (Liang et al. 1969), as demonstrated by the plot of { Ra(?} for axisymmetric
modes of convection as a function of aspect ratio shown in figure 1. Recently, Rosenblat (1982)
has used approximations formed from truncated eigenfunction expansions to find secondary
steady bifurcation near double points between axisymmetric and non-axisymmetric modes for
a cylinder with totally shear-free walls.

10 I | 1
8 b— —
o 6 »
I
g
P one cell
=)
= 4 two radial cells =
three radial cells
2 —
| | |
0 2 4 6 8

FiGure 1. Graph of critical Rayleigh numbers {Ra{"} as a function of aspect ratio A for a cylinder with shear-free
boundaries. Each curve is associated with a particular flow structure and the ordering of the modes is
interchanged by crossing the critical values 4,,.

34-2
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522 Y. YAMAGUCHI, C.J. CHANG AND R. A.BROWN

The boundary conditions on velocity at the sidewall of the cylinder have a striking effect
on the evolution of the critical values with aspect ratio and thus on the existence of the double
points and secondary bifurcation. As will be shown later, a cylinder with rigid walls exhibits
no crossing of the first and second critical Rayleigh numbers for aspect ratios between 0.5 and
2.75. Instead, the cellular structure of the flow branching from Ra{" changes continuously with
varying A. This result is in agreement with the velocity profiles shown by Charlson & Sani
(1970) for the onset of convection in the same problem. Brown & Stewartson (1978) estimated
sharp transitions in flow structure from an approximate analysis valid for large aspect ratios
in a cylinder with rigid sidewall and shear free ends. This linear analysis formed the basis of
nonlinear studies (Brown & Stewartson 1978, 1979) of changes in the structure of the
bifurcating flow family caused by the sidewall and imperfections in the insulating condition
along it. Exact calculations of the critical Rayleigh numbers for a cylinder with shear-free ends
and rigid sidewall were reported by Joseph (1971), but insufficient information about the
velocity component of the eigenfunction was given to deduce the evolution of the flow structure
with 4.

Numerical calculations of the finite amplitude flows in a vertical cylinder have been made
with the three combinations of shear-free and no-slip boundary conditions mentioned earlier.
Liang et al. (1969) list sixteen finite difference calculations, all near the critical Rayleigh
number, for different combinations of boundary conditions and included the dependence of
viscosity on temperature. Jones ¢ al. (1976) used time-dependent finite difference techniques
to calculate the flow patterns in a cylinder with shear-free boundaries for Rayleigh numbers
up to 100 Ra, and Prandtl numbers ranging between 0.1 and the limiting case of infinity. They
found a continuous family of flow fields that developed over this range of Ra with no qualitative
change in the structure of the flow from the single toroidal cell predicted from the eigenfunction
at Ra = Ra{. Charlson & Sani (1975) used approximations in terms of eigenfunctions to
compute the finite amplitude flows and stability for a cylinder with all rigid boundaries; the
configuration treated here. They present results for several aspect ratios and Prandtl numbers
for Ra up to three times the critical value.

The outline of the paper is as follows. The formulation of the natural convection problem
is presented in §2 and the finite element approximation and numerical techniques for tracking
solution families are reviewed in §3. The links between bifurcations between families of steady
flows and the stability of each flow are established in §4 and the criteria for exchanges of stability
are presented. Results of calculations of the onset of convection and the evolution of the flow
families are presented in §§5-7.

2. ForRMULATION

We study the axisymmetric two-dimensional flows in a rigid vertical cylinder of height L
and radius R filled with a fluid that has constant thermal diffusivity « and kinematic viscosity v.
The two ends are taken to be isothermal with the lower one held at a temperature AT above
the temperature 7, of the upper surface. Two different thermal conditions are examined for
the cylindrical sidewall; either it is assumed to be a perfect insulator or it is taken as a perfect
conductor so that a linear temperature profile exists along this wall connecting the temperatures
at the top and bottom ends. Both conditions were studied in Charlson & Sani (1970, 1975)
and the second case is included here for comparison with their calculations.
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The dimensionless forms of the Boussinesq equations that govern the temperature 6(r, z, t),
pressure p(r, z,t) and velocity v(r, z, t) fields are

Vv =0, (2.1)
0v/0t+v-Vo =—Vp+PrV2v+ RaPrf e,, (2.2)
00/0t+v-VO = V20, (2.3)

where V is the gradient operator in cylindrical coordinates and e, is the unit vector in the
vertical direction. The variables (v, p, ) have been put in dimensionless form by scaling lengths
with the height of the cylinder L, velocity with a/L, pressure with pa?/L?, time with L?/a and
temperature as {T(r,z,t) — T,}/AT, where T(r,z,t) is the dimensional temperature field and
p is the density of the fluid. The Rayleigh and Prandtl numbers appear in (2.1)—(2.3) and are
defined as Ra = pgl3AT/av, Pr=v/a, (2.4)
where f and g are the coefficient of thermal expansion and the acceleration of gravity,
respectively.
The boundary conditions for the velocity field are

v, =v, =0, 0<r<4, z=0,1, (2.5)
v, =v, =0, r=A4, 0<z< 1, (2.6)
v, =0v,/0r=0, r=0, 0<z<1, (2.7)

where A = R/L is the aspect ratio. When the sidewall is insulated the boundary conditions
on temperature are

=0, 0<r<4, z=1, (2.8)
6=1, 0<r<d4, z=0, (2.9)
00/or=0, r=0, 0<z< 1. (2.10)

The thermal boundary conditions for a cylinder with a perfectly conducting sidewall are the
same as (2.8)—(2.10), except that the condition evaluated at r = 4, equation (2.10), is replaced

b
Y O=1—z, r=A4, 0<z<1. (2.11)

For either set of thermal conditions the entire equation set has the static solution

v=0, 0=1—z, p=p,+RaPr(z—2%/2), (2.12)
from which the convective motions branch. We will represent these flows by Nusselt numbers
defined by x =£JA%rd ) i3

), 5 | (2.13)

where the temperature gradient is evaluated along either the top (Nu!) or bottom (NuP) ends
of the cylinder.

As pointed out by Liang et al. (1969), the system of equations and boundary conditions is
invariant under the transformation

(r,2, VUps Vg P 0)_)(7> 1—=2,0,, =0, p, _0) (2.14)

This property will help explain the structure of the bifurcating flows.
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3. NUMERICAL METHODS
3.1. Calculation of steady flows

Finite element methods are well established for solving the steady and transient Boussinesq
equations and boundary conditions. We use a method for mixed-order polynomial interpolation
of velocities, temperature, and pressure that has been proposed before (see Zienkiewicz et al.
1976, Huyakorn ¢t al. 1978, Taylor & Ijam 1979). The fluid domain (0 <7< 4,0<z< 1)
is first divided into equally spaced quadrilateral elements. On this discretization, the components
of velocity and the temperature are approximated by expansions in terms of biquadratic
polynomials {®;(r, z)} as

vr(r) Z, t) uj(t) . u;? uJS
i Ne Ny
v,(r,z,0) | = 2| ) [Py z)+ X | 05 | D)+ X | v | Dy(r,2), (3.1)
j=1 i=1 i=1
O(r,z,t) 0,(t) A o5 (1)

where the limits on the summations represent types of nodes in the elemental discretization;
N; is the number of nodes in the interior of the domain, N, represents the nodes along the top
and bottom ends of the cylinder, and N, is the number of nodes along the sidewall. Each
biquadratic function @;(r,z) is defined to have a value of one at the node with which it is
associated and to be zero at all other nodes. Because of this definition, the coefficients («;(¢),
v;(t), 6;(t)) represent the values of the field variables at the locations of the nodes. The boundary
conditions on temperature and velocity specify many of these coefficients and reduce the number
of unknowns that must be computed, with the exact number depending on the choice of thermal
boundary condition. The remainder of the development is presented for the case of the sidewall
being insulated. Then (2.8)—(2.10) set the coeflicients {«f, 07,65}, j = 1,... N, and {u},v5},
Jj=1,... N,

The pressure is approximated by the expansion in terms of bilinear polynomials {i;(r, z)}
as

M
p(riz,t) = 2 p(t) ¥(r,2), (3.2)

j=1

where M is the number of vertex nodes in the finite element mesh. Each function ¥(r, z) is
defined so that it has a value of one at the jth vertex node and is zero at all others. More details
of both sets of basis functions are available in many references (for example Thomasset 1981).
The weak forms of the field equations are formed by applying the Galerkin method to
(2.1-2.3). Each field equation is weighted with the basis function corresponding to the finite
element expansion for the appropriate field variable and is integrated over the fluid domain
0

5—1?J‘ @iv'ede=—f e, v-Vv+e, Vp—Pre,-Vv—RaPrb(e, e;)}d4,
Z 2

k=rz i=1,...N, (3.3
Qf ¢i0dA=f Di(V20—2-VO)dA, i=1,... N+ N, (3.4)
at), o
o=f PV-udd, i=1,...M. (3.5)
9
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The final forms of the residual equations are derived by applying the divergence theorem to
(3.3), (3.4), by substituting in the expansions (3.1), (3.2), and by incorporating the boundary
conditions for temperature and velocity. After these simplifications, the residual equations are
reduced to the nonlinear ordinary differential equations

1du gy o . O ai_gg lav,)
f¢¢dA f@{¢< ”’“ar %2z or Prf)r

X2
—Pr (aqs o, , 00" a”’)}dA, i=1,...N,

or or 0z Oz b (3.6)

N i dy; i i ov, v, Op lav )
f PiPidA = J‘@{¢(—vra—vz PP e RaPr6

i 13
——Pr(a¢ %, 00", )}dA i=1,... N, (3.7)

Oor Or 0z 0Oz
M d0; [ g i _, 90 60) 0" 20 @a_a}
J fq”jdA LD{‘D( Yo %2az) T or o oz az) O

i=1,... N+ N,, (3.8)
10 ov, .
O_IQW(;E);(W’) 2 )dA—O i=1,...M. (3.9)

This set is compactly represented by the notation

d
M{t- = R(x; Ra, Pr, A), (3.10)

where x is the vector of unknown coefficients

T

X0 = (Up gy oo Uy 5 03 Vg e Viy 301,05, O v s D1 bos - Pa)s (3.11)

and the vector R represents the nonlinear algebraic equations that compose the right sides of
egs. (3.5)—(3.8). The mass matrix M is sparse and has components that are integrals of products
of basis functions, but is mathematically singular because of the absence of time derivatives
from the continuity equation.

Steady state solutions of the natural convection problem are found by solving the
N, = (3N;+ N+ M) equations
t ( i s ) q R(x;Ra) — O, (3.12)

for given values of the parameters. We calculate families of solutions to (3.11) by combining
the Newton iteration with continuation methods (Kubieck 1976) for approximating the
sensitivity of the solution vector x on Rayleigh number. The details of these methods are laid
outin Ungar & Brown (1982) and only points important to the developments in § 4 are included
here.

Starting from a first approximation to the solution vector x(¥, the Newton method forms

iterations as ) . . ) ) )
20FD) = () _ §Gi+1) = (@) __J——l(x(z)) R(x(‘);Ra), (3.13)

where Jis the Jacobian matrix of the equation set (3.12), i.e. J;; = OR,/0x;. The Jacobian matrix
is asymmetric and has non-zeroes banded about the main diagonal because of the limited
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overlap of the finite element basis functions. The system of linear equations
JotY = —R(x®; Ra) (3.14)

is solved by Gaussian elimination with diagonal pivoting by using the frontal routine of Hood
(1976) to minimize the amount of computer memory necessary to perform the calculations.

The first guess of the solution vector for a Rayleigh number Ra®+ ARa, where x(Ra°) has
been calculated before, is approximated as

x°(Ra®+ARa, Pr,A) = x(Ra® Pr, A) + xg,  ARa. (3.15)

The tangent vector xp,, is calculated from the linear set that results from taking the directional
derivative of equations (3.12) along the solution family

J(Ra®, Pr, A) xp, = — (0R/0Ra) g0, (3.16)
which is solved simultaneously with the last Newton iteration.

3.2. Calculation of limat points, bifurcation points and multiple flow fields

Continuous families of flow fields are calculated by combining Newton iterations with
continuation methods as long as the flows are uniquely specified by Ra and no bifurcations to
other families occur. The non-uniqueness with respect to Ra in a single family appears near
a limit point Ra, where the family reverses direction in Ra. Classical perturbation methods are
well known for analysing both limit and bifurcation points and have been adapted by several
researchers (Keller 1977; Rheinboldt 1978; Brown et al. 1980) for implementation in numerical
algorithms; the methods used here follow techniques developed by Keller (1977).

Calculations near bifurcation and limit points are made effectively by introducing an
amplitude parameter € defined so that each family of flows is uniquely specified as (x(€), Ra(e€))
in the neighbourhood of the singular point fixed at € = 0. By following perturbation methods
used in classical bifurcation analysis, the solution vector x and parameter Ra are expanded as

x(€) ] % k[ x4
=X —[ ® 1, (3.17)
[Ra(e) w—o k! [ Rag,
where the components (x,, Ray,) are determined from the nonlinear equation set (3.12)

expanded to the appropriate order of €. The sets governing the corrections (%), Ra) and
(%(9), Rayy) are

R, (%(0); Ra(0)) %, = — Ry, (%(0); Ra(0)) Ragy, (3.18)

Rx (x(O) > Ra(O)) X@) = _Rxxx(l) X(1) — 2RxRa (x(O) ; Ra(O)) X (1) Ra(l)
—Rp,(%(0); Ra(0)) Rayy — RpypqRalyy.  (3.19)

In (3.19), R,, is the (N, x N, x N,)-dimensional matrix with components {R,.};; = OR?/
0x;0x; Ry g is the (Nyx Ny)-dimensional matrix with {R,p.}; = OR'/0x;0Ra; and Rp,p, is
the vector with {R g, p,}; = 02R!/0Ra?. This last vector is zero for the Boussinesq equations. The
(N, X N,)-dimensional matrix R, appearing in (3.18) and (3.19) is identical to the Jacobian
matrix evaluated about the solution at the singular point. Terms in the expansion (3.17) can
be computed once a suitable definition of € is selected; different definitions are used here for
handling bifurcation and limit points.

Riks (1972) firstintroduced, and Keller (1977) refined the idea of introducing the pseudo-arc
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length s for yielding local representations of the members of a solution family in the
neighbourhood of a limit point and this is a suitable definition of the amplitude parameter
€ = s—s,. For computing around limit points, we introduce the arc length evaluated from the
known solution (x(s,), Ra(s,)) through an additional residual equation

Rypir = (s750)" +lae(s) — 2 (50)ll3 +|Ra(s) — Ra(so) % (3.20)

where ||x||, is the R,-norm of x, i.e.

Ny
llxll3 = 2 .
=1

The tangent vector (x,), Ra,,) for implementing continuation is computed by solving (3.18)
augmented with the linearization of (3.20) about the known solution

s—so+d x4+ (Ra(s) — Ra(s,)) = 0, (3.21)

where d; = 0Ry ,,/0x;. The (Ny+1)-dimensional matrix formed from (3.18) and (3.21) is
non-singular at limit points (Keller 19%77) and so the nonlinear set (3.12) augmented with (3.20)
is solved by the Newton method. The limiting value of Rayleigh number Ra, = Ra(s,) is
determined from the criterion Ra, = (dRa/ds),, = 0. At Ra = Ra, the right side of (3.18)
vanishes and x,, is determined as the solution of the homogeneous set and the orthogonalization
condition (3.21); the solution of this problem is discussed in the next section.

At values of Ra for bifurcation the Jacobian matrix is singular and the tangent vector xp,
has multiple values. For simple bifurcation points only one eigenvalue of J passes through zero
and bifurcation is detected by monitoring the sign of the determinant of J. The null vector
z corresponding to the zero eigenvalue and its adjoint vector y satisfy

J(%(Ra;); Ray) z = 0, JT(x(Rac);Rac>y =0, zTy =1, (3.22)

where J 7T is the transpose of J and is also banded. The null vectors are calculated by Gaussian
elimination with partial pivoting as implemented in the frontal routine. The singularity of J
and the non-uniqueness of the null vectors are accounted for by ignoring the last row in the
upper triangular matrix and by setting the N;th element of z and y to unity; these vectors are
later normalized so that ||z, = ||y, = 1.

The continuation vector x,, written in terms of €, is decomposed at Ra = Ra, into
components in the null space and range of J as

xXq) = 2o+ 4z, (3.23)
where z is the null vector, 4 is a constant that has yet to be determined and z, is the particular
solution of (3.18) that contains no component of z, i.e. that satisfies yTz, = 0. Because the right
side of (3.18) is homogeneous in Ra,, 2, = Ra, ¢, where ¢ is the particular solution of

J(x(Ra.); Rac) ¢ =—Rp,(x(Ra,); Rac) (3.24)
that is orthogonal to y. Equation (3.25) is solvable only if
YIRy,(x(Ra),; Ra,) = 0; (3.25)

that is, the vector Ry, must be in the range of J. Bifurcation between the two solution families
is guaranteed when Ra, is a simple eigenvalue and (3.25) is satisfied (see Keller (1977) and
Tooss & Joseph (1980)).

The tangent vectors to the base and bifurcating solution families are determined from (3.23)
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after 4 and Ra,, are computed from the definition of ¢ and the solvability condition for the
second-order problem (3.19). For analysing simple bifurcation points in a flow family (£(e),
/i(€)) we use the amplitude definition

e = Ay (x(e) —£(0)) + Ra,, (Ra(e) — Ra(0)), (3.26)

where 4 and p,, are associated with the solution family along which € is being defined. At

first order in €, (3.26) requires that
1 = A%+ Ra},,. (3.27)

The solvability condition for the second-order problem is

A2C, +24Ra ;) Cy+ RatyyC,y = O, (3.28)
h
where C, = 'R, 22,
C,=9"R,,cz+y"R 2, (3.29)

Cy, = 29"R, 5, c+y'R,, cc,

where the arguments of the derivatives of R are the same as in (3.19). Equations (3.27) and
(3.28) are the same bifurcation equations derived by Keller (1977). The two pairs (4, Ra ;)
are calculated as roots of these equations once the coefficients {C;} are determined at the
bifurcation point Ra = Ra,. We approximate derivatives of the form R, ab by using the
difference formula '

YR, (%(0); Ra(0)) ab =~ yT[R,(x(0) +da; Ra(0)) —R,(x(0); Ra(0))] b/5,  (3.30)

where 8 is a small positive constant, taken here to be 1072, The matrix R, is calculated exactly.
Flows in the bifurcating families are calculated by Newton iteration with an initial
approximation given by (3.17). The amplitude ¢ is picked to be large enough that the iterations
converge to a flow in the new family. When Ra,, is zero (C; = 0; see equation (3.28)) the new
family evolves either super- or sub-critically and we search for values of Ra both above and
below Ra, for new flows by using first approximations composed entirely of the null space.

4. BIFURCATION AND STABILITY

The relative stability of flows in individual families to small perturbations of the velocity,
temperature, and pressure fields can change only at bifurcation and limit points in families of
steady flows and at Hopf bifurcation points that mark the beginning of time-periodic motions.
The discretized form of the Boussinesq equations (3.10) is a convenient framework for
developing simple criteria for accessing the exchange of stability at the steady bifurcation and
limit points detected by methods outlined in §3.2. In this section, we use ideas presented by
Tooss & Joseph (1980) to extend earlier stability results developed by Szeto (1978).

The stability of a steady flow (£(Ra), Ra) is analysed with respect to small perturbations to
the field variables represented in the same finite element bases presented in §3.1 as

x(t; Ra) = £(Ra) +u(t) = £(Ra) + die™, (4.1)

where the vector # is independent of time. Linearizing (3.10) for the evolution of a vector
described by (4.1) gives the generalized eigenvalue problem for stability

oM = R, (%#(Ra); Ra) 4, | (4.2)
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where R, (%(Ra); Ra) is the Jacobian matrix of R evaluated about the steady solution. The
stability of this flow can be completely determined by computing the eigenvalues of (4.2);
however, repeated eigenvalue calculations are not feasible for the large matrices that result from
the finite-element approximations. Instead, we develop stability criteria for the case when an
eigenvalue o is zero at Ra = Ra, and passes through zero as Ra is varied past Ra, along the
primary flow family. The criteria focus on determining the sign of the derivative do/dRa at
Ra = Ra,.
The adjoint eigenvalue problem to (4.2) is

RT (£(Ra); Ra) y* = GMTy*, (4.3)

where y* is the adjoint eigenvector and & is the complex conjugate of 0. At Ra = Ra,, o is
zero and the eigenvectors are the null vectors in (3.22) with « = z and y* = y.

4.1. Exchange of stability at a limit point

Consider a family of flows parameterized by the amplitude € as (x(€), Ra(e)) near a limit
point at Ra = Ra, and corresponding to € = 0. By expanding the eigenvalue and eigenvector
in (4.2) for small e, taking the inner product with respect to y, and evaluating at € = 0,

<<_ig) _Y'Ryy2y 2+ 0T Rxp, 2) Rag, (4.4)
de )., »™Mz ’ '

where the derivatives of R are evaluated at x(0) and Ra(0). At a limit point, Ra,, is zero,

do\  AQ"R,, zz)
(HZ)€=.,‘ O™™z) )

%y = Az and (4.4) reduces to

The constant 4 is most efficiently eliminated from (4.5) by introducing (3.26) as the definition
of ¢, which gives 4 = 1. Equation (4.5) is simplified further by introducing the solvability
condition for the second-order problem (3.19) evaluated at the limit point; '

Ray, =y™R,,2z/R}, y. (4.6)
Substitution of (4.6) into (4.5) gives the criterion for evaluating stability at a limit point as

do 'R
(?d—e)é::o = _Ra(z)—‘l‘zﬂ. (4.7)

We evaluate the sign of Rag,, from flows and their corresponding value of € on both sides of
the limit point and calculate the ratio yTR g, /yTMz by using the adjoint null vector determined
from (3.22). The criterion (4.7) has been derived by Szeto (1978).

4.2. Exchange of stability at a bifurcation point

Equation (4.4) gives the direction for the crossing of the eigenvalue through zero at either
a bifurcation or limit point. Along the primary family, we assume that Ra,, is not zero and
(4.4) is rewritten in terms of the coefficients in the bifurcation equation (3.28)

do AC,+C,Ra
do _ A6, + Gyl
(de)e_o (yT™z) ° (4.8)
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as first presented by Szeto (1978). The criterion (4.8) can be evaluated along either the primary
or the bifurcating family by using the pairs (4, Ra,) determined as roots of (3.27), (3.28) and
is sufficient for determining exchanges of stability unless Ra,, is zero; that is, unless the
bifurcation is super- or sub-critical. Then do/de = 0 along the bifurcating family and stability
is determined by the second derivative (d%0/de?), = 0. Szeto (1978) has developed a formula
for this coefficient that involves the third derivative R, evaluated at the bifurcation point,
a difficult quantity to calculate. Instead of using this result, we develop a more easily evaluated
criterion based on the approach of Tooss & Joseph (1980) of linking the shapes of the bifurcating
families to the exchange of stability along the primary family.

2. Super- and sub-critical bifurcation points

The equation set (3.10) is recast into local form expressed about the known, primary solution
family (£(e), Ra(e)) by defining the new vector w(€) = x(e) —£(e) and the equation set

dw/dt = f(w; Ra(e)) = R(w+%(€); Ra(e)) — R(£(g) ; Ra(e)). (4.9)

Equations (4.9) have the steady solution w(e) = 0 and the vector f(w; Ra(e)) also satisfies the
conditions
0%f/0Ra* (0; Ra(e)) = 0, (4.10)
for all values of k.
The form of the bifurcating family is analysed by constructing an expansion in € of w(¢) and
Ra(€) similar to (3.17). In this local form, the first-order corrections are governed by

Juw(w(€); Ra(e)) w,(€) + Ra,(€) frq(w(€) ; Ra(e)) = 0, (4.11)

with the subscript € standing for partial differentiation. When quantities in (4.11) are evaluated
at the bifurcation point (¢ = 0) this equation is analogous to (3.18). However, the condition
(4.10) with £ = 1 then reduces (4.11) to a homogeneous equation for w(0) = w,, (0), which
has a component only in the null space of the Jacobian matrix £(0; Ra(0)) = £,(£(0); Ra(0)).
Hence, the tangent vector in local form is, in some sense, strictly normal to the primary flow,
that is

w,(€) = 2+ 0(e). (4.12)
The stability of the flows along the bifurcating family (w/(e), Ra(e)) is resolved in terms of an
eigenvalue problem form by perturbing these steady solutions as w(¢; €) = w(e) +{e’?, where
the magnitude of ¢ is small. This eigenvalue problem is

Juw(w(e); Ra(e)) = y(e) ML, (4.13)
Ji(w(€); Ra(e)) £* = y(e) MTL*, (4.14)

and its adjoint is

where {* is the adjoint eigenvector.
An equation for the eigenvalue y(€) valid for any flow in the bifurcating family is derived
by forming the inner product between {* and the first-order problem (4.11) and by using the

relation £, = fEC*w, = 7le) M ¥, (4.15)
Then y(€) is given by
v(€) = —Ra,(€) {*f pq(w(e); Ra(e))/ M T* . (4.16)
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A useful criterion for assessing stability at sub- or super-critical bifurcation points is derived
by expanding the right side of (4.16) for small € by using the result (4.12) and the relations

Ra.(e) = Rayy+ Rae+0(e?), &* =yp+0(e),
and Sra((€); Ra(e)) = fyra (0; Ra(0)) ze+ O(e?)
= R,,(%(0); Ra(0)) ze+ O(e?).
Then equation (4.16) reduces to

TR £(0); Ra(0)) ze?
._.Ra(2)y ZRa (ygrlzdz ( )) + 0(63), (4.17)

y(e) =

which is re-written in terms of the slope of the eigenvalue o along the primary flow family as

where (dRa/de),_

is the slope of the critical eigenvalue. The result (4.18) is equivalent to the factorization theorem

o is the slope of the primary family at the bifurcation point and (do/de),_,
derived by Iooss & Joseph (1980) and gives the stability of the bifurcating family in terms of
its evolution near the bifurcation point and the exchange of stability along the primary flow
family.

5. CALCULATION OF THE ONSET OF CONVECTION

The critical values of Rayleigh number where steady flows branch from the static state have
been calculated by monitoring the determinant of the Jacobian matrix evaluated about the
solution of (2.11). This determinant is plotted in figure 2 for a cylinder with 4 = 0.5 and
insulated sidewall, as calculated with a mesh composed of four elements in each of the axial
and radial directions. This mesh leads to a set of 224 nonlinear equations. The calculations

10"
T\,
l (2)
101 - '
OIO olo| ), (4)

ol ojo 0(){00 =

olo

—f— S

—10'+

—10%-
—10°- u
Ficure 2. Determinant of the Jacobian matrix evaluated about the static state as a function of Rayleigh number

for a 4x4 finite element mesh: (1) Ra®™ = 10892+1; (2) Ra® =28481+1; (3) Ra™ = 69134 +2;
(4) Ra® = 79950+ 50. The cylinder has insulated sidewalls; A4 = 0.5, Pr = 1.0.
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were made with Pr = 1.0; however, the critical values of Rayleigh number are independent
of Prandtl number. Although the determinant of J is extremely small in an absolute sense, its
roots in terms of Ra are clearly seen in figure 2 and can be systematically refined by numerical
bisection. In most cases, we located the roots of det (J) to within +5 in Rayleigh number.
The lowest three critical values (Ra(l, Ra?, Ra{®) calculated here are compared in table 1

TABLE 1. COMPARISON OF THE LOWEST THREE CRITICAL RAYLEIGH NUMBERS CALCULATED BY FINITE
ELEMENT ANALYSIS WITH VALUES REPORTED BY CHARLSON & SANI (1970) FOR CYLINDERS
WITH INSULATED SIDEWALLS AND ASPECT RATIOS BETWEEN 0.5 AND 2.75.

(The mesh has been adjusted to conform with the aspect ratio of the cylinder)

critical Rayleigh numbers

finite - A N
aspect element mesh C.S. percentage
ratio (f.e.m.) f.e.m. (1970) difference mode
RaV
0.50 4x8 10892 10887 0.05 1
1.00 4x4 2270 2262 0.35 1
1.60 6x4 1933 1922 0.57 1
1.70 6 x4 1956 1946 0.51 2R
2.00 8x4 1871 1862 0.48 2R
2.25 8x4 1800 1792 0.45 2R
2.70 10 x4 1804 1793 0.61 2R
Ra®
0.50 4x8 28481 — — 2A
1.00 4x4 6678 6632 0.70 2R
1.60 6x4 2456 2449 0.29 2R
1.70 6x4 2312 2304 0.35 2R
2.00 8x4 2344 2329 0.64 2R
2.25 8x4 2322 2315 0.30 3R
2.70 10 x4 1977 1969 0.41 3R
Ra®
0.50 4x8 69134 68048 0.13 2R
1.00 4x4 20610 19266 6.98 3R
1.60 6 x4 4721 4701 0.43 3R
1.70 6 x4 4076 4067 0.22 3R
2.00 8x4 2951 2940 0.37 3R
2.25 8x4 2744 2727 0.62 1R
2.70 10 x4 2631 2629 0.08 4R

to results reported by Charlson & Sani (1970) for cylinders with insulated sidewalls and aspect
ratios between 0.5 and 2.70. The meshes used in our calculations were varied so that the size
of the elements remained essentially constant over this range of aspect ratio. The finite element
results agree well with those of Charlson & Sani, even for these relatively coarse discretizations.
The structure of the flow field also is represented on table I by the number of toroidal roll cells
in the axial and radial directions; for example, 2R denotes a flow with two toroidal cells nested
radially in the cylinder. For small 4, our ordering of the second and third critical Rayleigh
numbers does not agree with Charlson & Sani, who didn’t report flows with more than one
cell in the axial direction.

Increasing the number of elements in the mesh leads to more accurate results for the values
of Ra,, and the corresponding eigenfunctions. The lowest two critical values (Ral, Ra{?’) were
computed as a function of mesh for a cylinder with an insulated sidewall and 4 = 1.0. Both
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values varied by less than 0.6 %, for meshes of between 4 X 4 and 8 X 8 elements. The values
of Ra at the first several bifurcation points are plotted on figure 3 as a function of aspect ratio.
The structure of the flow fields that evolve from these critical values are indicated by contours
of the stream function shown for each curve and plotted more exactly on figure 4. The flow

20— -1
&
E
101~ —
f > _oo.oo )
| { | | !
0 1 2 3

4

Ficure 3. Lowest several critical Rayleigh numbers for a cylinder with insulated sidewalls
as a function of aspect ratio 4.

field originating at the lowest value of Ra, evolves continuously with A4 from a single cell, to
a two-cell, and then to a three-cell flow; see the plots for the lowest values of Ra, on figure 4.

For the calculations presented here with no-slip boundary conditions on all surfaces, there
were no crossings of the curves of the lowest two values of Ra,; the only sharp interchange of
the ordering of two bifurcating families was found between the second and third critical values
near A = A, = 0.715. The second critical point Ra{ = Ra¥ for this aspect ratio was a
second-order critical point with two linearly independent eigenfunctions and hence had a Reisz
Index of one (see Iooss & Joseph 1980). The role of this point in the nonlinear evolution of
the flow structure is brought out in §7.2.
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] : Ra® = 2951 2744 2840
- Ficure 4. Contours of stream function for the eigenfunction corresponding to the lowest three critical values of
;5 S {Ra{®} for aspect ratios between 0.5 and 2.75.
O H
e
Eg 6. FINITE AMPLITUDE FLOW FIELDS: A4 = 1.0
= The finite element approximations and computer-aided methods for tracking multiple

solutions to algebraic equations have been used to calculate flow fields in the families emanating
from the lowest four critical values of Rayleigh number for a cylinder with aspect ratio 4 = 1.0
and an insulated sidewall. Here and throughout the remainder of this report the fluid is taken
to have a Prandtl number of one. Flow fields in each family close to Ra, were found by using
the first approximation equation (3.23) with the corresponding eigenvector. Experience from
weakly nonlinear analysis of Rayleigh-Bénard problems (Schluter et al. 1965 ; Rosenblat 1982)
and other finite amplitude calculations for the cylindrical geometry (Liang et al. 1969; Charlson
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& Sani 1975) suggested that the bifurcating families evolve supercritically in Rayleigh number
(towards increasing Ra). We searched for, and always found, the new flow families at Ra— Ra,,
greater than zero near Ra,. The direction of the flows (either up or down along the centre line
of the cylinder) in a particular family was arbitrary and pointed to two distinct families evolving
from each bifurcation point. Both were computed by changing the sign of the constant 4 in
(3.23).

The flow families computed with a 4 x 4 mesh are represented on figure 5 as a plot of the
average Nusselt number between the top and bottom surfaces of the cylinder as a function of

I I | | T
1U 1D
i i
| '
OO OO
| s
2.5 ' ' —
| 2AISU
[} !
/\ . D! D
2RD D )
lll I + 2 A.SD —
. /100100 ==
£ A O 5 Z Ol
+ /I \ ZII(U /// i
23 / : ////
= / | /s
/ ll /, Ve
/ . 4
/ //
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// .// 3RU
3RD
/ 2ASD 77 secondary }
/ /" bifurcati 10003 T 245U
/ o/u— Difurcations 000' OOO /,
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/7 2ASD
10001 l .
1.0 o< 1 9«) | ]
190 1.905 1.91
0.5 | l I I | |
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107* Ra

Ficure 5. Families of axisymmetric flow fields in a cylinder with insulated sidewalls for 4 = 1.0 and Pr = 1.0.
Stable flows are shown by solid curves and unstable flows by broken ones.

35 Vol. 312. A
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Ra. Since the sidewall was insulated, the heat fluxes through the top and bottom should have
been the same and these two Nusselt numbers should have been equal. As discussed later, the
discretization error in the finite element approximation prevented this condition from being
satisfied. Flows composed of a single roll cell moving either up (1U) or down (1D) along the
centre line developed for Ra > Ra,; sample streamlines and isotherms from the 1D family are
shown in figure 6. At large values of Ra— Ra, these flows developed a small secondary vortex

Ra = 2.312 x10? 1.0 x 104 2.5 x10% 2.9 x 10*
0=0
@ @
=1
=-0. 0740\ —0.2794\

= 3 183 4.954 4.699

Ficure 6. Representative streamlines and isotherms for flows in the 1D family that occur before the limiting
value for Ra for 4 = 1.0.

in the upper corner of the cylinder, which grew with increasing Ra. This secondary flow was
found only for values of Rayleigh beyond those calculated by Charlson & Sani (1975). The
flows in the 1U and 1D families were identical up to the transformation given by (2.14) and
hence are not truly distinct. They appear as one on figure 5.

The flow families that bifurcated from the second critical value Ra(® had two cells nested
radially. Again there were two families of flows that differed only by the direction of the axial
motion along the centre line as given by the transformation (2.14); we called these the 2RU
and 2RD families, where the 2R designation represented the radial structure of the flow. Sample
stream functions and isotherms for flows in the 2RD family are displayed figure 7. As the
Rayleigh number increased the purely radial orientation of the cells was lost and the flow
evolved towards the same cellular configuration shown in figure 6 for the 1D family.

Neither the (1D, 1U) or the (2RD, 2RU) families existed for Ra beyond a critical value
Ra,— 2.3 x 10%, where the two families connected to form continuous solution curves; the value
Ra = Ra, is a limit point. The arguments for evaluating linear stability put forth in §4 show
that the static solution lost stability at Ra = Ra{", as found by Charlson & Sani (1970), and
that the 1U and 1D flow families were stable. These flows lost stability at the limit point. The
flows in the 2RU and 2RD families were all unstable. The stability of the flows in each family
is shown in figure 5 by solid (stable) and broken (unstable) curves.
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Ra = 6.519 x 10° 1.0x10* 2.0 x 104 2.9 x 10
6=0
=1
v = —0.5068 —0.7213 —0.3035

Q

B

¥ = 0.9412 2.436 4635

Ficure 7. Representative streamlines and isotherms for flows in the 2RD family for 4 = 1.0. Each of these
flows are unstable.

The flow families that bifurcated from the third Ra{® and fourth Ra(® critical values are also
shown in figure 5. Flows in the families evolving from Ra{®) had three radially nested cells (3RU
and 3RD) and passed quickly through a limit point in Rayleigh number. The flows associated
with Ra{? had two roll cells stacked axially on top of each other. We called these families 2ASD
and 2ASU, where the 2A designated the two axial cells, S stood for the plane of reflective
symmetry through z = %, which divided the cells, and the D and U described whether the flow
in the top cell was down or up along the centre line. Interestingly, the 2RU and 3RU families
were connected by a secondary bifurcation point to the 2ASU family. Two other points of
secondary bifurcation were also located on the 2ASD family, but because the 2ASD flows were
already unstable, the flow families evolving from these critical points were not calculated. The
flows in the 2ASD and 2ASU families are not connected by the transformation equation (2.14),
which, if applied to a solution in either family, simply produces the same flow. Hence, both
families are distinct and have different bifurcation behaviour.

The nonlinear connection of two families that appeared to be distinct in linear analysis was
an important result of the calculations for 4 = 1.0 and was found at all values of aspect ratio.
We pause here to show that this phenomeon was not an artifact of the coarse finite-element
approximation, but was indeed present for calculations with finer meshes. This point is made
by examining figure 8, where the results of tracking the 1D and 2RD flow families are shown
for four different finite element discretizations; clearly, all three sets of calculations were in
qualitative agreement and the 6 x 6 and 8 X 8 meshes gave very similar results, indicating
convergence of the calculations with mesh refinement.

We also attempted to compare the Nusselt numbers calculated for flows in the 1D family
near the critical value Ra{ with those reported in Charlson & Sani (1975), but found the
Nusselt numbers reported there to be much smaller than either the values we calculated or
the values reported by Jones e al. (1976) for cylinders with large aspect ratio and shear-free
sidewalls. Another comparison between our calculations and those of Charlson & Sani was made

35-2
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3 T T T T T
meshes

4x4-—-
5x§—
6x6——
8x 8 ——

3(Nuy+ Nuy,)

107* Ra
Ficure 8. Families of 1D and 2RD flows in a cylinder with insulated sidewalls computed with four different
finite element grids; 4 = 1.0 and Pr = 1.0.

by calculating the flows that evolve from the lowest critical Rayleigh number for a cylinder
with 4 = 1.0 and a perfectly conducting sidewall. The Nusselt numbers evaluated at the top
and bottom surfaces are plotted for this case in figure 9 for two finite element grids along with
the numbers reported by Charlson & Sani (1975). The sets of calculations are in good
agreement with the finite-element results, converging to those of Charlson & Sani (1975) for

0.5 | | | ]
1 3 5

Ra/RaV

Ficure 9. Nusselt numbers at top and bottom surfaces of a cylinder with perfectly conducting sidewalls; 4 = 1.0
and Pr = 1.0. Finite element results for two meshes are shown along with the results of Charlson & Sani (1975):
—4x4fem., Ra =25557+0.1; 0, 8x8fem., Ra® =25454+0.1; @, Charlson & Sani (1975),
Ral) = 2549.0.
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the finest mesh used. The 1D family reached a limiting value of Ra for a cylinder with
conducting sidewalls, just as it did for the perfectly insulated cylinder; this situation is discussed
in more detail in another publication (Brown ef al. 1984).

7. EVOLUTION OF NONLINEAR FLOW STRUCTURE WITH ASPECT RATIO

The double point found between the second and third critical Rayleigh numbers at
A= A4,~0.715 (see figure 3) hints that the nonlinear structure of the steady flows may
undergo qualitative changes with varying aspect ratio. In this section, we report results for
aspect ratios between 0.5 and 2.00 for a fluid with Pr & 1.0 in cylinders with insulated sidewalls.
The enormous number of calculations (almost 1500) needed to make this study has necessitated
the use of the coarse finite-element meshes listed in table 1 for each value of 4. Although
calculations with these meshes may have errors in the overall heat balance as great as 109,
for a few of the more vigorous flows, the checks of accuracy for 4 = 1.0 discussed in §6 and
mesh refinement of several of the calculations reported in this section give confidence that the
qualitative structure of the flow fields are correct.

7.1. The case A = 0.5

The flow families that evolved from the lowest two values of Ra, are represented in figure
10 for A4 = 0.5 and Pr = 1.0. Just as for the cylinder with 4 = 1.0, flows composed of a single
roll cell (1U and 1D families) developed for Ra > Ra{P up to a limiting value of Rayleigh
numbers Ra = Ra,. Representative streamlines for flows in the 1D family are shown in figure
11 and again developed a small secondary cell in the upper corner of the cylinder, which
intensifies with increasing Ra up to Ra,. The evolution of the 1D and 1U families past the limit
point differed from the structure for the same flow families with 4 = 1.0 discussed in §6.

For A4 = 0.5, the flow fields that bifurcated from Ra = Ra{® had two cells stacked axially
(2ASU and 2ASD) and also evolved toward higher values of Ra; flows in the 2AUS family
are shown in figure 12. The plane of symmetry between the two cells were broken at secondary
bifurcation points to new flow families, as indicated in figure 10. The new flows branching from
the 2ASU family are denoted by 2AUU and 2AUD, where the first U in both labels indicates
that the top cell was circulating upward along the centreline and the suffixes U and D indicate
whether the top (U) or bottom (D) cell was the strongest. Members of the 2AUD family are
displayed in figure 13 to show that velocity fields away from the secondary bifurcation point
had such a large bottom cell that the top one was pushed into the upper right corner of the
cylinder and that the flows closely resembled those in the 1D family. As implied by this remark,
the 1D and 2AUD families were connected along the solution curve that lead to the limit point
Ra = Ra,. Likewise the 1U and 2AUU families were connected as expected because of the
symmetry property (2.14).

The stability of the flows in these two families was determined entirely on the basis of the
results for the stability of the flows emanating from the static state, the numerical calculation
of Ra, as a simple limit point and the connectivity of the flow families. As shown in figure 11,
only the 1U and 1D flow families are stable in the sense described in §4.
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107 Ra
Froure 10. Families of axisymmetric flow fields in a cylinder with insulated sidewalls for 4 = 0.5 and Pr = 1.0.
Stable flows are denoted by solid curves and unstable flows by broken ones.

7.2. Flows near the double point: A = A, = 0.715
The double pointat A = A, ~ 0.715 between the 2A and 2R families marked the first change
in the flow structure from that shown for 4 = 0.5. The flows computed for aspect ratios of 0.71
and 0.72, which bracket this double point, are represented in figures 14 and 15. For 4 = 0.71,
the first two families have 1U and 2A flow patterns and are connected at a secondary bifurcation
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Ra =3.0x10* 5.0 x 10* 8.0 x 10* 8.5x10*
Y =-—6961x10"2 —2379x1072

¥ = 1.0480 1.5826 2.0101

~
i
i
S

Ficurke 11. Representative streamlines and isotherms for flows in the 1D family that occur
before the limiting value Ra,.

point along the 2ASU branch, as was the case for 4 = 0.50. The only change in the single-cell
flows between A = 0.5 and 0.71 was the development of a pair of limit points in this family
and the creation of a new segment of stable flows; this behaviour is shown in figure 14. At
A = 0.71 a secondary bifurcation point was found along the 2ASD family (two symmetric axial
cells with the top cell flowing down at the centre line) and the flows evolving from this point
evolved continuously with increasing Rayleigh number into 2RU and 2RD flows.

Changing the aspect ratio so that 4 was greater than A, did not alter the connectivity of
the 1U, 1R and 2ASU families, but switched the order of appearance of the 2R and 2A families
and moved the secondary bifurcation point from the 2ASD to the 2ASU branch. The change
of the secondary bifurcation point as the aspect ratio passes through the double point 4 = 4,
is expected from the asymptotic theories of Bauer et a/l. (1975) and Keener (1976) for bifurcation
near such a second-order singularity. The connectivity between the 2R and 2A flow families
was not forecasted, although a similar structure occurred in the reaction-diffusion problem
studied by Keener (1976). Figure 16 shows the evolution of the 2A and 2R families that we
conjecture as A is varied through 4. Because of the connectivity between the two families and
the switching of the secondary bifurcation point from the 2ASD to the 2ASU families, only
the 2AU and 2AD flows are thought to exist at 4 exactly equal to 4.
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Ra = 2.65 x 10* 3.0 x 10 1.0x 10 2.5 x 10°
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Ficure 12. Representative streamlines and isotherms for flows in the 2ASU family.

7.3. Change in flow family connectivity by multiple limit point bifurcation

Varying the aspect ratio between 0.72 and 1.00 resulted in the loss of the secondary
bifurcation point pictured in figures 14-16 and the connectivity of the first two flow families
shown in figure 5. Evidence for the cause of this transition is displayed in the structure of the
2R and 2A flow families for 4 = 0.75 and 0.85 shown in figure 17. At the lower aspect ratio

p
s

— the connectivity between the 2R and 2A families was essentially the same as that discussed for
;5 P A = 0.72. However, at 4 = 0.85 the 2R and 2A flow families were no longer connected and
@) ~ the two secondary bifurcation points along the 2ASU family were found to join a single family
(=2 ﬁ of flows. The 2R flows evolved continuously into the single-celled flows.

= O The differences in structure between A = 0.75 and 0.85 suggests that the flows emanating
E 9) from the secondary bifurcation points interacted for 4 = A4*, 0.75 < 4* < 0.85, in a way that

replaced the coupling between the single-cell and 2A flows and resulted in the formation of
continuous paths between the 1U, 1D, 2RU and 2RD branches. Multiple limit point
bifurcation, as discussed by Decker & Keller (1980), is a possible mechanism for this transition.
The transitions through a multiple limit point are sketched in figure 18; here, the limit points
in the 2R and 2AU families would coalesce at 4 = A* and exchange connectivity, thereby
leading to the structure shown for 4 > A*.
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Ra = 4.0x10* 5.0x10* 7.7 %104 8.5 x 10*
Y =-3399x10"? —2.742x 107! © —1.953x107! —6.937 x 10“z

T Al

Y =5928x10"" 8.425 x 101 1.415 1.872
/ﬁ
ﬁ

Ficure 13. Streamlines and isotherms for members of the 2AUD family, which show the evolution of the flow
field with changing Ra into the 1D family; compare with figure 11.

\
/

—
7

=

7.4. The case A = 2.0

Increasing the aspect ratio beyond A = A* did not change the connectivity of the flow
families bifurcating from Ra{) and Ra{® shown for 4 = 0.72 (see figure 15). At large aspect
ratios both families were composed of flows with two radially nested cells, which only differed
in relative intensity; streamlines for sample flows in both families are shown in figure 20. The
flow patterns in two families that evolve from Ra{V and Ra(® both have two radial cells but
differed according to whether the inner or outermost cell was the most intense. Near the limit
point, Ra = R, >~ 3.2 x 10*, the two families converge with the outer cell driving the weaker
inner cell to the centre line of the cylinder.

A second set of flows bifurcating from Ra$® and Ra{? was also calculated and evolved as a
continuous loop with three radial cells (3R) in the first family and four cells (4R) in the second.
The coarse 10 X 4 mesh made it difficult to accurately resolve these velocity and temperature
fields at Rayleigh numbers much above the critical values. The qualitative structure of the 3R
and 4R flow families is most probably accurate; however, calculations with more refined meshes
are needed to accurately calculate the value for Ra at the limit point.

Starting from an initial approximation and continuation vector calculated for a flow
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O : Ficure 14. Families of axisymmetric flow fields in a cylinder with insulated sidewalls for 4 = 0.71 and
(=4 = Pr = 1.0. Stable flows are denoted by solid curves and unstable flows by broken ones.
= O
= belonging to the family that bifurcated from Ra{, the Newton iterations converged to a flow

in a new family. We tracked the family from this starting point and found it to evolve as a
closed loop or isola (Iooss & Joseph 1980, p. 42), which was not connected by bifurcation points
to any other flows. Flows throughout the isola were composed of a dominant cell with motion
up along the centre line, with a small anticlockwise vortex in the lower corner of the cylinder.
Sample streamlines along both the upper (with respect to Nusselt number) and lower branches
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of the isola are shown in figure 21. The limit points that connected these two families mark
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> - Ficure 15. Families of axisymmetric flow fields in a cylinder with insulated sidewalls
2 o for A = 0.72 and Pr = 1.0.
e
= O : . . - .
T O changes in the relative stability of the two families, but the absolute stability of these flows could
=w not be determined without either an understanding of the mechanism for creation of the isola

from flow families originally connected to the static family or numerical calculation of the
eigenvalues in (4.2).

We attempted to trace the evolution of the isola by numerically continuing solutions in the
loop for 4 = 2.0 at given Rayleigh numbers (Ra = 1 x 10* and 4.0 x 10%) to lower values of
aspect ratio. An isola was successfully located for 4 = 1.8. Attempts to locate theisolaat 4 = 1.4
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resulted only in calculation of flows in the 2R family. At this aspect ratio families of single-cell
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Ficure 16. Evolution of flow families between families with two axial and two radial cells
as aspect ratio is varied through 4.
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§§ Ficure 17. Structure of 2ASD, 2ASU and 2R flow families for 4 = 0.75 and 0.85; Pr = 1.0. All of the flows in
&= these families are unstable to at least one disturbance.
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A<A* A=A A>AT
multiple-limit point

1U/1D
— —
2RU/2RD, 1UAD -
1U/1D
2RU/2RD

2ASU 9ASU 2ASU

Nu

Ra

Ficure 18. Evolution by multiple-limit point bifurcation with varying aspect ratio through 4 = A*, which is
proposed as the mechanism for separation of the 2R and 2A flow families.

and 2R flows bifurcating from Ra{® and Ra{® were connected at a limit point
Ra = Ra, ~ 5.8 x 10%, where this value for Ra, was significantly higher than calculated for either
A =1.0or 2.0.

The flow fields calculated for Ra = 1.0 X 10* and 4.0 x 10* with 1.4 < 4 < 1.8 are shown
in figure 22 and seem to indicate that a continuous path in the solution space was traced. This
result and the decrease in Ra, between aspect ratios of 1.4 and 2.0 gave credence to the idea
that the isola was created by the creation of singular points along the 2R family. The only
candidate seemed to be the pinching of the loop to a point of self-intersection and finally to
separation. This mechanism for isola generation has been documented in models from reaction
engineering (Uppal ef al. 1976) and leads to the interesting conjecture that one branch of the
isola may be composed of stable flows. We have not tried to analyse the creation of the isola
beyond the results reported here. Again, finer finite element meshes may be necessary to resolve
this detail.

8. DiscussioN

The most significant finding of this study was the connectivity predicted between families
of axisymmetric flows that originated at adjacent critical Rayleigh numbers. A continuous path
of axisymmetric flows was found for all aspect ratios tested between 0.5 and 2.00. The details
of the path, i.e. whether it involved only a limit point or included secondary bifurcation, did
depend on aspect ratio. Imperfections in the thermal boundary conditions, which introduce
radial temperature gradients, will rupture both the primary and secondary bifurcation points
calculated here, as described by the analysis of Hall & Walton (1976). Then the connectivity
between the first and second axisymmetric families will be by a limit point along a continuous
path for 0.5 < 4 < 2.70.

Connectivity between bifurcating families has not been detected in the previous asymptotic
analyses of convection in either rectangular slits (Hall & Walton 1979) or cylinders with
shear-free boundaries (Rosenblat 1982). Both analyses focused on values of aspect ratio for
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: Ficure 19. Families of axisymmetric flow fields in a cylinder with insulated sidewalls for 4 = 2.0 and Pr = 1.0.
P
O H
e, a semi-simple double points. The first two double points between axisymmetric flows are
Q) represented in figure 1 for a cylinder with shear-free boundaries. Neither of these second-order
E 9) critical points exists for a cylinder with no-slip boundaries, as shown in figure 3. We believe

the imperfection in the spectrum of the linearized problem caused by varying the boundary
conditions on the tangential velocity plays a major role in establishing the connectivity between
solution families observed here, but not seen in calculations for cylinders with shear-free
sidewalls (Jones et al. 1976). A systematic asymptotic study of convection in cylinders with
slightly sticky boundaries is underway.

The calculations presented here are only the first step toward a comprehensive understanding
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of convective transitions in a cylinder heated from below. Three-dimensional and time-periodic
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first 2RU family

(a) Ra =1.8x10° () Ra=1.0x10* (¢) Ra=3.2x10%
Y =—0.06 Y =—1.35 Y =-0.18
¥ =0.04 Y= 10.94 Y =17.70

second 2RU family

(d) Ra = 2.3x10° (e) Ra = 1.0 x 10* (f) Ra = 3.0 x 10
¥ = —0.003 ¥ =—022 ¥'=—0.63
¥ =0.24 ¥ =10.87 Y = 17.40

Frcure 20. Representative streamlines for flows in the 2RU families for 4 = 2.0 and Pr = 1.0; the six sets of
contours (a)—(f) follow the evolution of the flow from Ra{? around the limit point at Ra = Ra, & 3.2 x 10°.

top of isola

(a) Ra =3.01x103 () Ra = 1.5x10* (¢) Ra=4.4%x10*
Y= —2.?9 =—13.38 Y =—17.67

AR
[oohn
w

w =
bottom of isola
(d) Ra = 3.05x10° (¢) Ra=3.5x10° (f) Ra=1.0x10*
Y =—2.86 Y =-3.20 Y =—8.16
Y =0.07 ¥ =125

Ficure 21. Representative streamlines for flows in the isola found for 4 = 2.0 and Pr = 1.0; the six sets of contours
(a)—(f) follow the evolution of the flow from the branch with higher values of average Nusselt number to the
lower branch.
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Ficure 22. Streamlines of flows tracked for Pr = 1.0 and Rayleigh numbers of (z) 1.0 x 10* and (b) 4.0 x 10*
with changing aspect ratio.

flows are almost unexplored theoretically. Non-axisymmetric convection modes are known
(Charlson & Sani 1971) to be most dangerous at large and small values of 4 of a rigid cylinder.
Even when an axisymmetric mode is the first to bifurcate, as is the case for Pr = 1.0 and 4 = 1.0,
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three-dimensional convection may dominate after a secondary bifurcation, as demonstrated
by a few calculations in Charlson & Sani (1975) for a cylinder with conducting sidewalls.
Three-dimensional convection patterns and time-periodic flows have been reported by Olson
& Rosenberger (1979) for gases in a cylinder with 4 &~ } heated from below for Rayleigh
numbers 5.86 times Ral). The numerical value of Ra for the onset of oscillations is no doubt
a function of both aspect ratio and Prandtl number.

The strategy presented here for computing steady flows and analysing nonlinear structure
and stability generalizes to the study of three-dimensional flows by the finite-element method

and to other numerical approximations for computing two-dimensional convection that

p
[\ \

incorporate the Newton method for solution of the full set of residual equations (van Steeg &

i Wesseling 1978; McDonough & Catton 1982). Only the availability of large, fast super
> P computers limits this approach, as it did for the pioneering calculations of Charlson & Sani
® : (1975). Non-axisymmetric calculations are now feasible in geometries where the boundary
i G conditions allow spectral representation of the azimuthal dependence of the field variables. New
T O numerical approximations that are a hybrid of spectral and finite element approximations are
= being developed for calculating steady three-dimensional convection in a cylinder.

Just as in asymptotic expansions based on eigenmodes, care must be taken to access the range
of validity of the numerical approximation at large values of |[Ra — Ra,| or when the flow pattern
involves multiple cells. Spurious steady solutions to discretized equations have been reported
in several studies (Schrieber & Keller 1983; Chang & Brown 1983; Yeh ¢ al. 1984) when the
numerical approximation, either finite-difference or finite-element, cannot resolve boundary
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layers and separation in a flow field. Similar numerical artifacts can result at low values of
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|Ra— Ra,| when the finite-element approximation is insufficient to resolve multiple flow cells;
this limitation has restricted our calculations to 4 < 3. Spectral decompositions are better suited
to calculations at large A.

The authors are grateful to the Microgravity Sciences Program of the U.S. National
Aeronautics and Space Administration and to the Information Processing Services at Massa-
chusetts Institute of Technology for support of this work. Y. Yamaguchi was supported by
Mitsubishi Chemical Industries Ltd.

REFERENCES

Bauer, L., Keller, H. B. & Reiss, E. L. 1975 Multiple eigenvalues lead to secondary bifurcation. SIAM Rev. 17,
101-122.

Bénard, H. 19or Les tourbillons cellulaires dans une nappe liquide transportant de la chaleur par convection en
régime permanent. Annls Chim. Phys. 23, 62-144.

Brown, R. A, Chang, C. J. & Adornato, P. M. 1984 Finite element analysis of directional solidification of dilute
and concentrated binary alloys. In Modelling of casting and welding processes (ed. J. T. Berry & J. A. Dantzig).
Warrendale, PA: AIME.

Brown, R. A. & Scriven, L. E. 1980a The shapes and stability of captive rotating drops. Phil. Trans. R. Soc. Lond.
A 297, 51-79.

Brown, R. A. & Scriven, L. E. 19806 The shape and stability of rotating liquid drops. Proc. R. Soc. Lond. A 371,
331-357.

Brown, R. A, Scriven, L. E. & Silliman, W. J. 1980 Computer-aided analysis of nonlinear problems in transport
phenomena. In New methods in nonlinear dynamics (ed. P. Holmes), pp. 289-307. Philadelphia: SIAM.

Brown, S. N. & Stewartson, K. 1978 On finite amplitude Bénard convection in a cylindrical container. Proc. R.
Soc. Lond. A 360, 455-469.

Brown, S. N. & Stewartson, K. 1979 On finite amplitude Bénard convection in a cylindrical container, part II,
SIAM JI appl. Math. 36, 573-586.

Chandrasekhar, S. 1961 Hydrodynamic and hydromagnetic stability. Oxford University Press.

Chang, C. J. & Brown, R. A. 1983 Radial segregation induced by natural convection and melt/solid interface
shape in vertical Bridgman growth. J. Cryst. Growth 63, 343-364.

Charlson, G. S. & Sani, R. L. 1970 Thermoconvective instability in a bounded cylindrical fluid layer. Int. J. Heat
Mass Transfer 13, 1479-1496.

Charlson, G. S. & Sani, R. L. 1971 On thermoconvective instability in a bounded cylindrical fluid layer. Int. J.
Heat Mass Transfer. 14, 2157-2160.

Charlson, G. S. & Sani, R. L. 1975 Finite amplitude axisymmetric thermoconvective flows in a bounded cylindrical
layer of fluid. J. Fluid Mech. 21, 209-229.

Daniels, P. G. 1977 The effect of distant sidewalls on the transition to finite amplitude Bénard convection. Proc.
R. Soc. Lond. A 358, 173-197.

Davis, S. H. 1967 Convection in a box: linear theory. J. Fluid Mech. 30, 465-478.

Decker, D. W. & Keller, H. B. 1980 Multiple limit point bifurcation. J. math. Anal. Appl. 75, 417-430.

Hall, P. & Walton, I. C. 1977 The smooth transition to a convective régime in a two-dimensional box. Proc. R.
Soc. Lond. A 358, 199-221.

Hall, P. & Walton, I. C. 1979 Bénard convection in a finite box: secondary and imperfect bifurcations. J. Fluid
Mech. 90, 377-395.

Hood, P. 1976 Frontal solution program for unsymmetric matrices. Int. J. Num. Meth. Engng 10, 379-399.

Huyakorn, P., Taylor, C., Lee, R. & Gresho, P. 1978 A comparison of various mixed-interpolation finite elements
in the velocity—pressure formulation of the Navier-Stokes equations. Computers and Fluids 6, 23—35.

Tooss, G. & Joseph, D. D. 1980 Elementary stability and bifurcation theory. New York: Springer-Verlag.

Jones, C. A., Moore, D. R. & Weiss, N. D. 1976 Axisymmetric convection in a cylinder. J. Fluid Mech. 73, 353—388.

Joseph, D. D. 1971 Stability of convection in containers of arbitrary shape. J. Fluid Mech. 47, 257-282.

Keener, J. P. 1976 Secondary bifurcations in non-linear diffusion reaction equations. Stud. appl. Math. 55, 187-211.

Keller, H. B. 19777 Numerical solution of bifurcation and nonlinear eigenvalue problems. In Applications of bifurcation
theory (ed. P. H. Rabinowitz), pp. 359-384. New York: Academic Press.

Keller, H. B. 1980 Two new bifurcation phenomena. In Applications of nonlinear analysis in the physical sciences (ed.
H. Amann, H. Bazley & K. Kirchgissner), pp. 60-74. New York: Pitman.

Kelly, R. E. & Pal, D. 1976 Thermal convection induced between non-uniformly heated horizontal surfaces. In
Proc. 1976 Heat Transfer and Fluid Mechanics Inst. Symp. (ed. A. A. McKillop, J. W. Baughn & H. A. Dwyer),
pp- 2-15. Stanford University Press.

36 Vol. 312. A


http://rsta.royalsocietypublishing.org/

/

AL

—
NI
olm
~ =
)
=0
= w

PHILOSOPHICAL
TRANSACTIONS
OF

A

9

A \

a

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

552 Y. YAMAGUCHI, C.J. CHANG AND R. A. BROWN

Kubicek, M. 1976 Dependence of solution of nonlinear equations on a parameter. 4ss. comput. Mach. Trans. Math.
Software 2, 98-1017.

Liang, S. F., Vidal, A. & Acrivos, A. 1969 Buoyancy-driven convection in cylindrical geometries. J. Fluid Mech.
86, 239-256.

McDonough, J. M. & Catton, I. 1982 A mixed finite difference-Galerkin procedure for two-dimensional convection
in a square box. Int. J. Heat Mass Transfer 25, 1137-1146.

Olson, J. M. & Rosenberger, F. 1979 Convective instabilities in a closed vertical cylinder heated from below. J.
Fluid Mech. 92, 609-629.

Rayleigh, Lord 1916 On convection currents in a horizontal layer of fluid when the higher temperature is on the
under side. Phil. Mag. 32, 529-546.

Rheinboldt, W. C. 1978 Numerical methods for a class of finite dimensional bifurcation problems. SIAM J! numer.
Anal. 15, 1-11.

Riks, E. 1972 The application of Newton’s method to the problem of elastic stability. J. appl. Mech. 39, 1060-1065.

Rosenblat, S. 1982 Thermal convection in a vertical circular cylinder. J. Fluid Mech. 122, 395-410.

Schliter, A., Lortz, D. & Busse, F. 1965 On the stability of steady finite amplitude convection. J. Fluid Mech.
23, 129-144.

Schreiber, R. & Keller, H. B. 1983 Spurious solutions in driven cavity calculations. J. comp. Phys. 49, 165-172.

Steeg, J. G. van & Wesseling, P. 1978 Solution of the Boussinesq equations by means of the finite element method.
Computers and Fluids 6, 93-101.

Szeto, R. K. H. 1978 The flow between rotating coaxial disks. Ph.D. thesis, California Institute of Technology.

Tavantis, J., Reiss, L. & Matkowsky, J. 1978 On the smooth transition to convection. SIAM J. appl. Math. 34,
322-337.

Taylor, C. & Ijam, A. Z. 1979 A finite element numerical solution of natural convection in enclosed cavities, Comp.
Meth. appl. Mech. Engng 19, 429-446.

Thomasset, ¥. 1981 Implementation of finite element methods for Navier—Stokes equations. New York: Springer-Verlag.

Ungar, L. H. & Brown, R. A. 1982 The dependence of the shape and stability of captive rotating drops cn multiple
parameters. Phil. Trans. R. Soc. Lond. A 306, 347-370.

Ungar, L. H. & Brown, R. A. 1984 Cellular interface morphologies in directional solidification. The one-sided
model. Phys. Rev. B 29, 1369-1380.

Uppal, A., Ray, W. H. & Poore, A. B. 1976 The classification of the dynamic behavior of continuous stirred tank
reactors — influence of reactor residence time. Chem. Engng Sci. 31, 205-214.

Yeh, P.-W., Kim-E, M., Armstrong, R. C. & Brown, R. A. 1984 Multiple solutions in the calculation of
axisymmetric contraction flow of an upper convected Maxwell fluid. J. Non- Newtonian Fluid Mech. (In the press.)

Zienkiewiez, O. C., Gallagher, R. H. & Hood, P. 1976 Newtonian and non-Newtonian viscous incompressible flow.
Temperature-induced flows. Finite element solutions. In The mathematics of finite elements and applications vol. 2
(ed. J. R. Whiteman), pp. 2356-267. London: Academic Press.

Zierep, J. 1963 Zir Theorie der Zellularkonektion V., Beitr. Phys. Atmos. 36, 70-76.


http://rsta.royalsocietypublishing.org/

